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ABSTRACT

Solar magnetic activity produces extreme solar flares and coronal mass ejections, which pose grave threats
to electronic infrastructure and can significantly disrupt economic activity. It is therefore important to ap-
preciate the triggers of explosive solar activity and develop reliable space-weather forecasting. Photospheric
vector-magnetic-field data capture sunspot magnetic-field complexity and can therefore improve the quality of
space-weather prediction. However, state-of-the-art vector-field observations are consistently only available
from Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) since 2010, with most other
current and past missions and observational facilities such as Global Oscillations Network Group (GONG) only
recording line-of-sight (LOS) fields. Here, using an inception-based convolutional neural network, we recon-
struct HMI sunspot vector-field features from LOS magnetograms of HMI as well as GONG with high fidelity
(∼ 90% correlation) and sustained flare-forecasting accuracy. We rebuild vector-field features during the 2003
Halloween storms, for which only LOS-field observations are available, and the CNN-estimated electric-current-
helicity accurately captures the observed rotation of the associated sunspot prior to the extreme flares, showing
a striking increase. Our study thus paves the way for reconstructing three solar cycles worth of vector-field data
from past LOS measurements, which are of great utility in improving space-weather forecasting models and
gaining new insights about solar activity.

Keywords: Sun: magnetic fields — methods: data analysis — methods: miscellaneous — methods: statistical

1. INTRODUCTION

Sunspot magnetic fields are generated within the solar in-
terior, become buoyant through the solar convection zone
and emerge at the photosphere and the corona as large-scale
structures of sunspots and active regions (ARs) in the form
of giant loops (Cheung & Isobe 2014). Coronal loops are
dynamic, driven by emerging magnetic flux, electric cur-
rent, and turbulent flows. Free magnetic energy stored in
these loops is occasionally released via magnetic reconnec-
tion in the form of explosions such as flares and coronal
mass ejections (CMEs) (Shibata & Magara 2011; Su et al.
2013). Radiation and charged particles emitted in these ex-
plosions can lead to severe space weather, disrupting our life
on Earth significantly (Pulkkinen et al. 2005; Eastwood et al.
2017; Boteler 2019). In the past, the geomagnetic storm of
1989, resulting from a X15-class flare and subsequent CME,
tripped circuit breakers in Hydro-Quebec power-grid causing
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a widespread blackout in Quebec (Boteler 2019). The Hal-
loween storm of 2003 produced extreme flares causing trans-
former malfunction and blackouts in Sweden, and damaging
multiple science-mission satellites (Pulkkinen et al. 2005).
In today’s society, a high-magnitude solar storm can poten-
tially lead to trillions of US dollars worth economic losses,
with up to a decade of recovery time (Eastwood et al. 2017).
Improving our understanding of AR magnetic-fields is there-
fore important for identifying triggers of these explosions and
achieving reliable space-weather forecasting.

Coronal and photospheric AR magnetic fields are non-
potential, comprising twisted flux-tubes as revealed by high-
resolution, high-cadence observations of the SDO (Pesnell
et al. 2012) since 2010. Large ARs and their complex dy-
namics, e.g. twisting and rotation, are known to be associ-
ated with solar explosive activity (Toriumi & Wang 2019).
The SDO/HMI photospheric vector-magnetic-field observa-
tions facilitate the calculation of AR features (Leka & Barnes
2007), such as total unsigned magnetic flux, free energy den-
sity, electric current helicity and Lorentz forces, characteris-
ing the AR magnetic-field dynamics. These features are pub-
licly available as the HMI data-product Space-weather HMI
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Active Region Patches (SHARPs) (Bobra et al. 2014). The
SHARPs features are extensively used for statistical stud-
ies of pre-flare magnetic-field evolution and energy build up
(Dhuri et al. 2019) and improving space-weather forecasting
using Machine Learning (ML) (Bobra & Couvidat 2015; Bo-
bra & Ilonidis 2016; Chen et al. 2019). HMI observations
are limited to only one full solar cycle (cycle 24) and there-
fore, statistical space-weather forecasting models based on
SHARPs are restricted.

Various difficulties are associated with the measurement
of the transverse component of the photospheric magnetic-
field (Stenflo 2013) and therefore, ground- and space-based
instruments monitoring the Sun since the 1970s, provide ob-
servations of only the longitudinal, i.e., line-of-sight (LOS)
component. Continuous full-disk LOS field observations
are available through the ground-based NASA/National So-
lar Observatory (NSO) Kitt Peak Telescope (1974 - present)
(Livingston et al. 1976), space-based Michelson and Doppler
Imager (MDI,1996 - 2011) (Scherrer et al. 1995) and ground-
based Global Oscillations Network Group (GONG,1995-
present). These LOS-field measurements, although not suf-
ficient for quantifying sunspot complexity to non-potential
energy and helicity, have been useful for providing a quali-
tative assessment of AR morphology via sunspot classifica-
tion schemes, such as the McIntosh classification (McIntosh
1990) and Mount Wilson classification which form the basis
of operational space-weather forecasts (Crown 2012).

Improving on these qualitative AR classifications and for-
mally devising a method to quantify vector-field properties
from LOS fields is of great utility — (i) because it allows for
“improving” past datasets of LOS observations and under-
standing how vector-field features have evolved over multi-
ple solar cycles, (ii) a reliable estimation of vector-field fea-
tures over the past few decades can be used to build more
robust statistical models for space-weather forecasting, and
(iii) for future missions acquiring only LOS data, vector-field
features and even full vector-field construction can be part of
an on-ground data-processing pipeline. ML methods such
as convolutional neural networks (CNN) developed through
the past decade have proven to be hugely successful in iden-
tifying patterns and correlations in large, high-dimensional
datasets and particularly images (LeCun et al. 2015; Good-
fellow et al. 2016). Here, we explore dependencies between
LOS magnetograms and the corresponding full vector-field
of ARs through a CNN model developed to estimate vector-
field features SHARPs using the LOS magnetograms mea-
surements from space-based SDO/HMI as well as ground-
based GONG.

2. DATA

We use photospheric LOS-magnetogram data provided by
HMI and GONG. GONG provides only LOS magnetograms.

Data
Train & Val Test

May’10 - Sep’15 Oct’15 - Aug’18
# HMI ARs 848 194
# HMI Samples 124633 26820
# GONG ARs 848 145
# GONG Samples 114443 13454

Table 1. The Helioseismic Magnetic Imager (HMI) and Global Os-
cillation Network Group (GONG) data used for training a CNN to
obtain vector-field features from Space-Weather HMI Active Re-
gion Patches (SHARPs) (Bobra et al. 2014).

HMI-derived SHARPs (the hmi.sharp cea 720s data series
(Bobra et al. 2014)) include vector and LOS magnetograms
of AR patches that are automatically detected and tracked
as they rotate across the visible solar disk (Bobra et al.
2014). HMI magnetograms are available at a plate scale of
0.5 arcsecs, i.e., ∼ 380 km at the disk center. GONG mag-
netograms are available at a plate scale of 2.5 arcsecs. The
magnetograms available in the hmi.sharp cea 720s series are
on a cylindrical equal-area (CEA) grid, thus eliminating the
projection effects. We similarly remap the GONG AR mag-
netograms to a CEA grid. We train a CNN to obtain SHARPs
features directly from LOS magnetograms of HMI as well as
GONG. We only consider top SHARPs features that produce
maximum flare forecasting accuracy for a machine learning
(ML) model (Bobra & Couvidat 2015). These are listed in
Table 2.

HMI measurements are sensitive to the observation con-
ditions as well as the relative velocity between SDO and
the Sun (Hoeksema et al. 2014). Observation conditions are
indicated by the QUALITY flag and we consider measure-
ments for which the Stokes vectors are reliable (QUALITY
≤ 10000 in hexadecimal) and when the relative velocity be-
tween SDO and the Sun is < 3500m/s (Bobra & Ilonidis
2016). Data closer to the limb are noisier because the higher
relative velocities as well as projection effects. Therefore,
we limit observations to within ±45◦ of the central meridian.
Further, we only include ARs from the SHARPs data series
that grow to a maximum area of > 25Mm2. This eliminates
a significant number of small ARs that do not produce major
(M- or X-class) flares. The SHARPs feature calculation us-
ing HMI vector-field observations considers those pixels in
the AR magnetograms for which the 180◦ ambiguity resolu-
tion is reliable (Bobra et al. 2014).

Observations between May 2010 and Aug 2018 are used to
train the CNN — approximately 80% of the data are used to
train and validate the CNN, while the remaining is the unseen
or test data. We chronologically split the ARs into training
and validation and test partitions: ARs in the period May
2010 - Sep 2015 for training and validation and Oct 2015 -
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Figure 1. The CNN architecture. (a) Convolutional neural network (CNN) architecture used for obtaining vector-field features from LOS
magnetograms. The architecture incorporates inception modules similar to GoogleNet Szegedy et al. (2015). The CNN takes in two inputs —
i) LOS magnetograms ii) AR center latitude (λc) and longitude (φc). There are no fully connected layers that directly process the magnetogram
input and therefore the CNN can process magnetogram patches of variable sizes. (b) Inception module used in the CNN.

Aug 2018 is for the test. Six-hourly samples are drawn from
the time series of each AR. All samples from a given AR
are exclusively part of either the training set, validation set
or the test set, to avoid biases arising from temporal coher-
ence of observations from an AR (Ahmadzadeh et al. 2021).
The number of ARs and magnetogram observations used for
training, validation and test are listed in Table 1. Since solar
activity depends on the phase of the cycle, the chronologi-
cal splitting may introduce a bias for training the CNN. In-
deed, the ratio of flaring-to-nonflaring ARs in the test data
is approximately half its value in the training and validation
dataset (Bhattacharjee et al. 2020). However, chronological
splitting is appropriate for operational space-weather fore-
casting tools.

3. METHODS

CNNs are neural networks with convolution filters (ker-
nels) to scan over the input data, typically 2D data of images,
and detect spatial patterns for tasks such as classification and
identification (LeCun et al. 2015; Goodfellow et al. 2016).
The convolution filters are K×K neurons that slide over the
images and detect different patterns. Convolution filters have
free parameters — each neuron has weight w and each con-
volution filter has bias b. Neurons process pixels of the inputs
(or the outputs from previous layers) xi by performing the
operation f (

∑
i wixi + b), where f is the activation function

(Hastie et al. 2001). CNNs also have pooling layers which
are used to reduce the input size as it progresses to deeper
levels of the CNN. A max-/average-pooling filter picks out

the maximum or average value from the given N×N feature
map. Pooling layers typically follow a convolutional layer in
a CNN to reduce the dimensionality.

We use a CNN architecture with inception modules simi-
lar to inception V1 modules from GoogleNet (Szegedy et al.
2015). Typically, in a convolutional layer, we use filters of
fixed size that work best for the particular problem. How-
ever, inception modules are designed to detect patterns over
a variety of length scales that may be present in the input.
They involve convolution filters of different sizes in a single
layer. The outputs from all the convolutional layers in an in-
ception module are concatenated and supplied as an input to
the following layer. The inception module used here com-
prises three convolution filters of sizes 3× 3, 5× 5 and 7× 7

and one 3× 3 max-pooling filter.
The CNN architecture is shown in Figure 1. The CNN

takes in two inputs — i) LOS magnetograms of AR patches
and ii) latitude (λc) and longitude (φc) of the center of AR
patches. The CNN consists of two regular convolutional lay-
ers and followed by the two inception modules that process
the LOS magnetograms. The latitude and longitude are pro-
cessed by a fully connected layer of neurons. The output
of the two regular convolutional layers and the first incep-
tion module are reduced by a max-pooling layer. The output
of the final inception module is reduced by a global max-
pooling layer and also a global-average pooling layer. These
are concatenated with the output from the fully connected
layer that processes the longitude and latitude. The concate-
nated layer is connected to the output layer of neurons. The
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Figure 2. Schematic of ML models. (left:) Convolutional Neural Network (CNN) models process LOS magnetograms as input and produce
vector-field features SHARPs as output. SHARPs features group together in four groups based on their mutual correlations as shown. We
develop four different CNN models to estimate SHARPs from four different groups. All CNN models have identical architecture described in
Figure 1 except the final output layer, where, the number of output neurons is equal to the number of SHARPs features to be estimated from
the respective group. (right:) Baseline models using Linear Regression (LR) for estimation of two groups of SHARPs features which depend
on electric current and free energy respectively using extensive SHARPs features and Schrijver’s R value (Schrijver 2007) as an input.

number of neurons in the output layers is equal to the num-
ber of SHARPs features being estimated (see Figure 2). We
use a linear activation function for the convolutional layers,
which explicitly treats the positive and negative pixel values
from LOS magnetograms symmetrically. Also, the fully con-
nected layer of neurons has a tanh activation to explicitly
treat positive and negative values of latitude and longitude,
that are normalised between ±1, symmetrically. The final
output layer of neurons have sigmoid activation (Han & Mor-
aga 1995; Hastie et al. 2001) to yield the normalised value of
the estimated SHARPs features between 0 and 1.

The absence of fully connected layers in the network that
processes the LOS-magnetogram input implies that the CNN
architecture can analyze LOS magnetograms of arbitrary
sizes. Since AR patches are of varied dimensions, magne-
tograms in the training, validation and test data are also cor-
respondingly differently sized. As such, our CNN does not
require pre-processing to convert magnetograms to a fixed
size and thus it is free from biases that may arise as a result
of resizing (Bhattacharjee et al. 2020).

We use 10-times repeated-holdout validation for training
the CNN (Hastie et al. 2001). We randomly split ARs in the
training and validation sets into three parts and use data from
two parts for training and the remaining part for validation.
This process is repeated nine times while ensuring that the
data from an AR is part of either the training or the valida-
tion and not both. The output from the CNN is compared

to the original SHARPs feature values. The sigmoid output
layer of the CNN lies in a continuous range between 0 to
1. The original SHARPs features are normalised by dividing
by their respective maximum values. We partition the nor-
malised features (over range 0 to 1) in the training set into
ten bins of equal width (0.1) and oversample the data in each
bin to match the number of samples in the maximally popu-
lated bin. The input magnetograms are standardised, i.e., a
mean is subtracted and the resultant magnetogram is divided
by a standard deviation of the magnetic field values. The
mean and standard deviation used for standardisation are cal-
culated over all pixels of all magnetograms in the training and
validation data of the respective instrument. The CNN out-
put is compared to the original SHARPs values and the loss
function — defined to be the mean squared error — is com-
puted. We train the CNN to minimize the mean squared error
over different epochs using stochastic gradient descent (Bot-
tou 1991; Hastie et al. 2001) with a learning rate of 0.00007.
The CNN is developed using the Python library keras.

4. RESULTS

4.1. Estimation of AR vector-magnetic-field features using
CNN

The SHARPs features considered (listed in Figure 2 and
Table 2) are correlated among each other and are divided
into four groups based on mutual Pearson correlations (Dhuri
et al. 2019): (i) features that depend on the area of ARs, i.e.,
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10-times Repeated-Holdout Validation Test
SHARPs Features HMI GONG HMI GONG
Total unsigned flux 95.14 ± 00.62 90.87 ± 01.96 89.73 ± 02.70 87.42 ± 01.39
Area 95.87 ± 00.49 95.06 ± 00.84 92.00 ± 01.70 92.88 ± 00.88
Total unsigned vertical current 94.78 ± 00.71 91.80 ± 01.69 88.86 ± 02.57 89.00 ± 01.76
Total unsigned current helicity 95.74 ± 00.50 91.65 ± 01.76 88.33 ± 02.65 83.31 ± 02.28
Total free energy density 96.19 ± 00.80 92.60 ± 01.60 90.17 ± 02.37 91.22 ± 01.25
Total Lorentz force 96.64 ± 00.47 94.94 ± 00.98 90.63 ± 02.46 92.71 ± 00.87
Absolute net current helicity 90.37 ± 03.28 63.76 ± 03.65 57.83 ± 08.84 57.60 ± 06.97
Sum of net current per polarity 89.51 ± 02.53 64.58 ± 03.08 61.93 ± 07.63 59.09 ± 06.96
Mean free energy density 95.10 ± 01.00 89.92 ± 00.79 92.13 ± 01.80 91.73 ± 00.54
Area with shear > 45◦ 95.02 ± 00.81 90.00 ± 01.19 90.59 ± 01.57 90.48 ± 00.46
Flux near polarity inversion line 90.54 ± 00.56 76.28 ± 01.83 77.11 ± 00.79 70.43 ± 00.79

Table 2. Pearson correlations between the CNN-estimated vector-field features SHARPs and their true values. SHARPs (Space-weather
HMI Active Region Patches) features are calculated from HMI vector-field observations (Bobra et al. 2014). The p-values for all correlations
are ∼ 0.0. SHARPs features are mutually correlated (Dhuri et al. 2019) and accordingly arranged in the four groups as features depending on
(i) AR area (ii) electric current (iii) mean free energy density (iv) R-value i.e. the sum of flux near polarity inversion line (Schrijver 2007).

10-times Repeated-Holdout Validation Test
SHARPs Features HMI GONG HMI GONG
Total unsigned flux 86.92 ± 01.13 86.27 ± 01.75 81.19 ± 01.74 77.11 ± 02.20
Area 89.57 ± 01.10 92.11 ± 00.75 87.10 ± 01.33 86.91 ± 01.21
Total unsigned vertical current 86.82 ± 01.41 87.34 ± 01.38 81.22 ± 02.10 79.07 ± 02.52
Total unsigned current helicity 87.37 ± 01.41 87.49 ± 01.48 82.61 ± 02.24 79.40 ± 02.69
Total free energy density 84.23 ± 01.46 85.53 ± 02.17 81.32 ± 03.27 80.11 ± 02.42
Total Lorentz force 90.63 ± 01.04 92.78 ± 00.98 86.96 ± 01.51 86.49 ± 01.66
Absolute net current helicity 59.61 ± 05.26 59.35 ± 03.36 57.70 ± 06.29 2.27 ± 02.73
Sum of net current per polarity 60.02 ± 03.95 65.75 ± 02.95 57.51 ± 02.58 7.85 ± 02.79
Mean free energy density 92.02 ± 00.97 91.59 ± 00.92 93.02 ± 01.42 92.58 ± 00.35
Area with shear > 45◦ 93.19 ± 00.98 90.08 ± 00.54 91.63 ± 00.65 89.96 ± 00.37
Flux near polarity inversion line 91.69 ± 00.47 76.63 ± 02.60 83.00 ± 00.85 75.32 ± 00.92

Table 3. Spearman correlations between the CNN-estimated vector-field features SHARPs and their true values. The p-values for all
correlations are ∼ 0.0.

extensive features that include AR area, total unsigned flux,
total unsigned vertical current, total unsigned current helicity,
total free energy density and total Lorentz force, (ii) features
that depend on the electric current in ARs, i.e., absolute net
current helicity and sum of net current per polarity, (iii) fea-
tures that depend only on the non-potential energy in ARs,
i.e., mean free energy density and area with shear> 45◦, and
finally, (iv) Schrijver R value (Schrijver 2007) viz. the sum
of flux on the polarity inversion line. Overall, we develop
four different CNNs (Figure 2) to estimate SHARPs features
from these respective four groups. For each CNN, the output
layer comprises K neurons to estimate K SHARPs features
corresponding to each of the four groups.

Extensive features are strongly correlated with AR total
unsigned flux, that depends only on the radial component
of the magnetic field. The radial component is tradition-

ally estimated from AR LOS magnetic field using a poten-
tial field approximation (Leka et al. 2017). Using a CNN,
we directly estimate these extensive features without first re-
quiring to estimate the radial magnetic field. The R value
depends only on LOS magnetic field and can be directly
calculated using GONG LOS magnetograms. However, to
match HMI SHARPs R value, GONG LOS magnetic fields
require a cross-calibration. CNN models are expected to im-
plicitly learn the cross-instrument calibration during training
(Munoz-Jaramillo et al. 2022) and estimated SHARPs values
are also expected to be automatically cross-calibrated.

Unlike the extensive features, an accurate estimation of
SHARPs depending on electric current and mean free energy
requires explicit knowledge of the full vector-magnetic fields.
Such features are important for understanding triggers of so-
lar storms and are typically estimated assuming magnetic-
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10-times Repeated-Holdout Validation Test
SHARPs Features Pearson Spearman Pearson Spearman
Absolute net current helicity 70.99 ± 06.08 68.21 ± 02.25 67.10 ± 03.94 70.32 ± 00.56

Sum of net current per polarity 71.83 ± 03.79 70.51 ± 02.23 57.97 ± 02.90 67.07 ± 00.55

Mean free energy density 72.11 ± 04.87 79.63 ± 04.49 74.41 ± 01.90 81.91 ± 00.66

Area with shear > 45◦ 67.89 ± 02.93 69.16 ± 03.41 70.83 ± 00.39 77.86 ± 00.20

Table 4. Correlation between SHARPs features estimated using the baseline models and their true values. Two baseline Linear Regression
(LR) models are developed (Figure 2) that take extensive SHARPs features and Schrijver’s R value as input and produce SHARPs features that
depend on electric current and mean non-potential energy as output.The p-values for all correlations are ∼ 0.0.

Total unsigned flux Absolute net current helicity Mean free energy density
Spline Fit Time Derivative Spline Fit Time Derivative Spline Fit Time Derivative

Validation HMI 97.41 ± 00.37 84.46 ± 02.75 94.99 ± 02.02 77.70 ± 12.16 98.54 ± 00.38 89.68 ± 02.50
GONG 91.62 ± 01.94 25.51 ± 08.68 66.12 ± 03.73 33.23 ± 05.40 92.12 ± 07.77 75.52 ± 02.29

Test
HMI 90.50 ± 02.60 75.18 ± 06.81 60.21 ± 09.21 32.44 ± 18.33 94.14 ± 01.52 82.06 ± 03.06

GONG 88.63 ± 01.48 18.07 ± 06.22 59.72 ± 07.14 27.03 ± 07.81 93.69 ± 00.49 70.52 ± 01.91

Table 5. Trend comparison of CNN-estimated and true SHARPs features. Pearson correlations between the time derivative of the true and
the CNN-estimated values of total unsigned flux, absolute net current helicity and mean free energy density. The time derivative is obtained
for the true and the CNN-estimated features of each AR after fitting the respective time series to a cubic spline. For reference, the Pearson
correlations between the spline fit values of the true and the CNN-estimated features are also shown. Note that these are consistent with the
values in Table 2.

field models, e.g., linear and non-linear force-free models
(Régnier & Priest 2007). Here, we provide a purely data-
driven estimation of these features using a CNN. In order to
assess the performance of the CNN, we use Linear Regres-
sion (LR) models as a baseline. We develop two separate LR
models, one each for features that depend on electric current
and free energy, respectively. As input, the LR models have
extensive features and R Value. The first LR model produces
absolute net current helicity and sum of net current per polar-
ity as the output while the second produces mean free energy
density and area with shear > 45◦ as the output. Figure 2
shows a schematic of the CNN models as well as the base-
line models.

We use Pearson and Spearman correlations for measuring
the performance of the CNN and baseline models. Pearson
correlation measures a linear correlation between the true
and estimated values of the vector-magnetic-field features.
Spearman correlation is a rank correlation that captures the
monotonic relationship between the true and estimated val-
ues in addition to the linear relationship measured by the
Pearson correlation. Pearson and Spearman correlations for
the CNN-estimated vector-magnetic-field features are listed
in Tables 2 and 3 respectively. For the baseline models, these
correlations are listed in Table 4.

From Table 2, the Pearson correlations of CNN-estimated
vector-field features is higher for HMI than GONG and thus
appear to be dependent on the spatial resolution of LOS
magnetograms. For HMI, the CNN-estimated extensive fea-
tures yield a Pearson correlation of ∼ 95% for the validation

and ∼ 90% for the test data. For GONG data, the corre-
sponding correlation is ∼ 90%. The Pearson correlations of
CNN-estimated values of extensive features are not a perfect
∼ 100%, since the SHARPs calculation does not consider
all pixels, rather, only taking into account those for which
disambiguation of the azimuthal component of the magnetic
field is reliable (Bobra et al. 2014). From Table 3, the Spear-
man correlations for the extensive features are only slightly
lower than the corresponding Pearson correlations implying
that the ranking of the estimated features is generally consis-
tent with the true ranking.

The Pearson and Spearman correlation values for features
that depend on the non-potential energy are significantly high
> 90% across the validation and test datasets. These corre-
lation values are also ∼ 10%− 20% higher compared to the
linear regression baseline model (Table 4). These features,
namely mean free energy density and area with shear > 45◦,
explicitly depend on the full vector-magnetic-field.

For features that depend on electric current — i.e., absolute
net current helicity and sum of net current per polarity — the
CNN does not perform better than the baseline model. While
the Pearson correlation for the validation are 20% higher
compared to the baseline of 70%, Spearman correlations are
approximately equal (up to the error bars) at 60%. Also, the
CNN fails to generalise to the test data with a low Pearson
and Spearman correlation scores of 60% each.

Figure 3 shows scatter plot visualisations of the correla-
tion between true and CNN-estimated SHARPs features for
HMI and GONG from the ten validation sets. For HMI, the
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Figure 3. Comparison of true and CNN-estimated SHARPs vector-field features. Scatter plots for the distribution of CNN-estimated
and true HMI values of total unsigned flux, absolute current helicity and mean free energy density obtained from HMI and GONG LOS
magnetograms. The 45◦ line is marked for reference.

true and CNN-derived values mostly match relatively closely,
except at only very small values (< 200 G2 − m−1) of ab-
solute net current helicity where the CNN estimates are sig-
nificantly larger. For the HMI test data as well as GONG
data, the CNN-estimation of absolute net current helicity for
large values (> 1000 G2 − m−1) is consistently on the
lower side (∼ 500 G2 − m−1). Figure 4 explicitly shows
mean absolute errors in the CNN estimation as a function
of the true values for HMI and GONG. Mean absolute er-

rors in CNN-estimated values from GONG magnetograms
show higher dependence on true values compared to HMI
and increase significantly with increasing true values of the
respective features, particularly for the validation data. For
total unsigned flux, mean absolute errors of CNN-estimated
features of both HMI and GONG are significantly higher for
the extreme values 15 − 20 × 1022 Mx. For the HMI test
data and GONG data, mean absolute errors are more than 12
times higher at large magnitudes (> 1000 G2 − m−1) of
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Figure 4. Mean absolute error of the CNN-reconstructed vector-field features. The CNN-estimated values of total unsigned flux, absolute
current helicity and mean free-energy density for HMI and GONG are binned into 10 uniform bins as per the respective true values. Mean
absolute error as a function of the mean true values of each population bin are shown. 1-σ error bars for each bin are also shown. The legend
in the top left panel applies to all panels.

absolute net current helicity compared to the HMI validation
data. The average relative errors for GONG and HMI are
comparable at ≈ 80 ± 10%, 900 ± 100% and 25 ± 2% for
total unsigned flux, absolute net current helicity and mean
free energy density respectively. The high average relative
errors imply that the CNN estimates are far off from true val-
ues, particularly for SHARPs features with low true values.
SHARPs features from ARs which produce at least one ma-
jor flare (M5 or greater) show a significant drop in average
relative errors, at approximately 30 ± 15%, 300 ± 80% and
16± 2% respectively.

4.2. Time evolution of the CNN-derived features on flaring
active regions

For understanding AR magnetic-field dynamics and im-
proving forecasting of solar storms, it is important that tem-
poral variations of the CNN-estimated SHARPs is faithful to
the true SHARPs. We measure trends in the time evolution
of SHARPs features of an AR by fitting the observed and the
CNN-estimated values with smooth spline curves and calcu-
late numerical time derivatives. Table 5 lists Pearson correla-
tions between time derivatives of splines, fitted to the true and
the CNN-estimated values of total unsigned flux, absolute net
current helicity and mean free energy density. We find that
the Pearson correlations are high, ∼ 80%, for HMI, with the
exception of absolute net current helicity values from the test
data. For GONG, only the Pearson correlations for mean free
energy density are high enough, ∼ 70%, to suggest that the

corresponding trends are captured reasonably accurately in
the CNN-estimated features. These discrepancies between
trends of the CNN-estimated GONG and true values appear
to be a consequence of the lower resolution of GONG mag-
netograms.

A comparison of the time evolution of true and CNN-
estimated features obtained from HMI and GONG for in-
dividual ARs that produce at least one major flare (M5 or
greater) is shown in Figure 5. The true and CNN-estimated
values of total unsigned flux, absolute net current helicity and
mean free energy density are in agreement, particularly for
HMI, capturing evolution of these features before and after
flares. Disagreements between the true and CNN-estimated
features occur only at the extreme values of these features.
E.g., for X9.3 flare in NOAA 12673 in September 2017,
which was the largest flare in cycle 24, the CNN accurately
estimates the rise of the total unsigned flux and also mean
free energy density prior to the flare. The absolute net cur-
rent helicity rises to unusually high values prior to the X9.3
flare (30% more than the maximum values encountered in
the training data) and therefore the corresponding CNN es-
timates are inaccurate. More examples of comparisons of
the time evolution between true and CNN-estimated features
from ARs that produce at least one M5 or greater flare are
included in the Appendix Figure 9.

The CNN estimation of SHARPs features on flaring ARs
is thus useful for understanding AR magnetic-field evolution
leading to particularly violent solar storms in the past. The
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Figure 5. Comparison of true and CNN-estimated SHARPs vector-field features. Comparisons of time evolution of the CNN-estimated
total unsigned flux, absolute net current helicity and mean free energy density with true values for ARs that produce M5 or greater flares. Only
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with major flares). The right plot shows an extreme event with the largest flare observed in cycle 24. The gaps correspond to the missing
observations and 1-σ error bars are shown. The legend in top left applies to all plots. The plots are smoothed with a six hourly running average.

Halloween storms of October 2003 produced extreme flares
from AR NOAA 10486 of magnitudes X17.0, X10.0 and the
largest recorded flare X28.0 (Pulkkinen et al. 2005). The
magnetic-field evolution leading to these extreme flares was
characterised by rotation of a major positive polarity of the
delta sunspot as shown in the top panel of Figure 6 (Zhang
et al. 2008). Without the knowledge of vector-magnetic-
fields, free energy and current helicity during these storms
are previously modelled based on the magnetic virial theo-
rem (Metcalf et al. 2005; Régnier & Priest 2007), linear/non-
linear force-free field extrapolation (Régnier & Priest 2007),
and a Minimum Current Corona model (Kazachenko et al.
2010). We obtain a model-free and purely data-driven CNN-
estimates of total unsigned flux, absolute net current helic-
ity and mean free energy density during these storms using
LOS magnetograms. However, the HMI observations are not
available for this period. We therefore use the CNN trained
with HMI magnetograms to process LOS observations from
MDI during the Halloween storms to estimate time evolution
of total unsigned flux, absolute net current helicity and mean
free energy density. Flare X28.0 is excluded as it occured

outside 45◦ of the central meridian. In particular, the CNN-
estimated absolute net current helicity of NOAA 10486 rises
continuously by 25% between X1.2 flare and X17.0 flare cor-
responding to the observed sunspot rotation. A similar grad-
ual rise of a modelled helicity flux by 50% between X1.2
and X17.0 flare has been reported (Kazachenko et al. 2010),
caused primarily by helicity injection from the rotation of
the sunspot. The CNN estimates show that the absolute net
current helicity stays high leading to the X10.0 flare and falls
thereafter. The CNN-estimated mean free energy density also
rises leading to the X17.0 and X10.0 flares. Note that these
CNN-estimated values from MDI magnetograms are not ex-
pected to be corrected for the instrument cross-calibration be-
tween the MDI and HMI since the CNN is trained with only
HMI magnetograms. Table 8 in the Appendix lists the Pear-
son and Spearman correlations between the true values and
the CNN-estimated values using MDI line-of-sight magne-
tograms, during the overlap period of MDI and HMI. These
correlation values are significantly lower compared to those
estimated from HMI magnetograms (Tables 2 and 3). There-
fore, a rigorous estimation first requires standardisation of
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systematic rise leading to the flares. The CNN accurately captures helicity injection due to the sunspot rotation showing a significant increase
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The plots are smoothed with a six hourly running average.

MDI and HMI magnetograms (e.g., with other approaches
such as super-resolution (Munoz-Jaramillo et al. 2022)). We
also used the GONG magnetograms to estimate the vector-
field features during the storms using the CNN trained with
GONG (see Appendix Figure 10). The values of the vector-
field features estimated using GONG magnetograms are in
the extreme range, as expected during the storms. However,
the sensitivity of these estimated values to pre- and post-flare
magnetic-field variations is lower compared to the features
estimated from MDI.

4.3. Flare forecasting using CNN-derived features

The SHARPs features have been extensively used for
building flare-forecasting models using ML (Bobra & Cou-
vidat 2015; Bobra & Ilonidis 2016; Nishizuka et al. 2017;
Dhuri et al. 2019; Chen et al. 2019; Ahmadzadeh et al. 2021).
In order to assess the utility of CNN-estimated SHARPs
for flare-forecasting tasks, we compare their flare-forecasting
performance to the true SHARPs. We set up the problem
of forecasting M-/X-class flares with 24h warning similar
to Bobra & Couvidat (2015). We use two approaches for
the comparison. First, we build Linear Discriminant Analy-
sis (LDA) classification models using one SHARPs feature
at a time. This allows for direct comparing of the true and
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Feature accuracy recall(+) recall(-) TSS

True SHARPs
Total unsigned flux 87.04 ± 02.36 51.16 ± 18.79 88.99 ± 02.95 40.16 ± 17.15
Area 85.27 ± 02.16 58.78 ± 17.32 86.67 ± 02.71 45.45 ± 15.55
Total unsigned vertical current 88.19 ± 02.75 64.39 ± 07.67 89.50 ± 03.00 53.89 ± 07.14
Total unsigned current helicity 89.81 ± 02.82 66.17 ± 05.76 91.15 ± 02.99 57.32 ± 06.20
Total free energy density 89.77 ± 02.04 52.17 ± 11.96 91.84 ± 02.33 44.01 ± 11.07
Total Lorentz force 87.68 ± 02.47 52.39 ± 16.75 89.60 ± 02.90 41.99 ± 15.55
Absolute net current helicity 91.01 ± 02.17 58.29 ± 08.63 92.92 ± 02.40 51.21 ± 08.32
Sum of net current per polarity 90.96 ± 01.99 60.64 ± 08.29 92.72 ± 02.30 53.37 ± 07.56
Mean free energy density 76.56 ± 02.94 70.16 ± 04.95 76.92 ± 03.09 47.08 ± 05.98
Area with shear > 45◦ 67.15 ± 03.32 74.55 ± 04.39 66.72 ± 03.54 41.27 ± 05.54
Log of flux near polarity inversion line 67.57 ± 03.83 97.98 ± 01.63 65.83 ± 04.05 63.81 ± 05.06

CNN:HMI
Total unsigned flux 85.01 ± 02.69 69.52 ± 08.66 85.87 ± 02.99 55.39 ± 07.65
Area 83.54 ± 01.84 70.88 ± 06.98 84.23 ± 02.17 55.11 ± 05.36
Total unsigned vertical current 85.51 ± 02.59 71.04 ± 07.54 86.30 ± 02.94 57.34 ± 06.02
Total unsigned current helicity 86.39 ± 02.23 69.81 ± 06.28 87.32 ± 02.46 57.13 ± 05.36
Total free energy density 88.02 ± 02.00 61.87 ± 08.08 89.48 ± 02.30 51.35 ± 06.68
Total Lorentz force 86.04 ± 02.74 68.47 ± 09.26 87.03 ± 02.94 55.50 ± 08.97
Absolute net current helicity 88.70 ± 02.03 72.11 ± 06.77 89.62 ± 02.14 61.73 ± 06.52
Sum of net current per polarity 88.82 ± 02.22 73.94 ± 08.13 89.64 ± 02.42 63.58 ± 07.50
Mean free energy density 76.33 ± 02.68 69.17 ± 05.34 76.72 ± 02.87 45.89 ± 05.40
Area with shear > 45◦ 71.55 ± 02.72 70.73 ± 08.44 71.57 ± 03.00 42.30 ± 07.84
Log of flux near polarity inversion line 76.62 ± 02.80 91.88 ± 03.58 75.72 ± 03.16 67.59 ± 02.28

CNN:GONG
Total unsigned flux 87.01 ± 02.44 53.17 ± 11.56 88.87 ± 02.84 42.05 ± 10.34
Area 84.32 ± 02.57 60.14 ± 12.87 85.62 ± 02.98 45.76 ± 11.51
Total unsigned vertical current 87.06 ± 02.43 54.33 ± 11.78 88.87 ± 02.83 43.20 ± 10.66
Total unsigned current helicity 88.15 ± 02.42 49.19 ± 13.78 90.30 ± 02.83 39.49 ± 12.85
Total free energy density 89.44 ± 01.69 41.35 ± 17.17 92.11 ± 02.34 33.45 ± 15.85
Total Lorentz force 86.96 ± 02.39 48.25 ± 19.33 89.06 ± 02.82 37.30 ± 18.34
Absolute net current helicity 91.26 ± 02.18 54.50 ± 11.18 93.39 ± 02.34 47.89 ± 11.16
Sum of net current per polarity 90.79 ± 01.77 52.30 ± 10.90 93.02 ± 02.06 45.32 ± 10.61
Mean free energy density 77.19 ± 03.73 67.10 ± 07.69 77.76 ± 04.08 44.86 ± 07.50
Area with shear > 45◦ 70.50 ± 04.47 73.21 ± 07.29 70.32 ± 04.84 43.53 ± 07.77
Log of flux near polarity inversion line 78.22 ± 04.06 84.98 ± 03.89 77.82 ± 04.38 62.80 ± 04.83

Table 6. A comparison of the CNN-estimated and true SHARPs features for flare forecasting using linear discriminant analysis (LDA)
of each feature. 1-σ standard deviation is shown.

the CNN-estimated values of each SHARPs feature for flare
forecasting. Second, we use all SHARPs features together
to train a support vector machine (SVM) for flare forecast-
ing. We measure the flare-forecasting performance using ac-
curacy, recall and the True Skill Statistics (TSS) score (Peirce
1884). However, only the latter two are robust to the class-
imbalance prevalent in the flare-forecasting problem (Bobra
& Couvidat 2015; Ahmadzadeh et al. 2021), and therefore
reliable for comparison. Our definitions of positive and neg-
ative classes are identical to the operational approach de-

scribed in Bobra & Couvidat (2015). In addition, we use
the 10-times repeated-holdout validation described in Sec-
tion 3. Unlike Bobra & Couvidat (2015), we explicitly ensure
that the samples from a given AR are not mixed in training
and validation sets (Ahmadzadeh et al. 2021). Also, as men-
tioned in Section 2, we only consider ARs with maximum
area > 25 Mm2. Both the LDA and SVM are implemented
using the scikit-learn library in Python.

Table 6 lists performance metrics for the classification of
M-/X-class flares using the LDA of one SHARPs feature at
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Flare forecasting using CNN obtained SHARPs features
Number of observations

# Positives 338
# Negatives 6011

accuracy recall(+) recall(-) TSS
True SHARPs 0.842 ± 0.030 0.856 ± 0.044 0.841 ± 0.033 0.697 ± 0.045

CNN:HMI 0.812 ± 0.028 0.869 ± 0.056 0.809 ± 0.031 0.677 ± 0.046
CNN:GONG 0.818 ± 0.031 0.801 ± 0.064 0.819 ± 0.035 0.621 ± 0.056

True SHARPs (Bobra & Couvidat 2015) 0.924 ± 0.007 0.832 ± 0.042 0.929 ± 0.008 0.761 ± 0.039

Table 7. Flare-forecasting performance of the CNN-reconstructed vector-field features. Flare-forecasting performance of a Support Vector
Machine (Cortes & Vapnik 1995; Hastie et al. 2001) trained using CNN-estimated SHARPs features (Table 2). The SVM is trained to forecast
M- and X-class flares 24h in advance, similar to Bobra and Couvidat (2015) (Bobra & Couvidat 2015). 1-σ standard deviation is shown.
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Figure 7. Interpretation of the trained CNN model. Boxplots showing weights in the penultimate layer of the CNN trained to reconstruct
total unsigned flux, absolute net current helicity and mean free energy density. Top five weights from the components of the penultimate
layer, i.e.. global average pooling, global max-pooling and fully connected layer processing AR location (see Figure 1), are shown for the ten
validation models. The red line indicates median of the weight populations.

a time. The accuracy, recall and TSS values obtained using
each of the CNN-estimated features from HMI and GONG
magnetograms are consistent with those of the true SHARPs
features up to the validation error bars. We note that Schri-
jver’s R value (Schrijver 2007) gives the highest TSS values
for flare forecasting using individual features.

Table 7 lists the performance metrics for the SVM clas-
sification of M-/X-class flares using all SHARPs features
together. TSS (∼ 68%) and recall (∼ 86%) values ob-
tained using an SVM trained with the CNN-estimated fea-
tures from HMI are consistent with those obtained using
the true SHARPs. TSS (∼ 62%) and recall (∼ 80%) val-
ues from an SVM trained with the CNN-estimated features
from GONG are slightly lower. For a comparison, we list
TSS (∼ 76%) and recall (∼ 83%) from Bobra & Couvi-
dat (2015) that are higher. The systematically lower TSS of
the SVM in forecasting flares when using true SHARPs val-
ues here as compared with Bobra & Couvidat (2015) is due
to exclusion of observations from ARs with maximum area
< 25 Mm2 (all nonflaring) and the explicit restriction that
samples from an AR are part of either training or validation
sets. Largely consistent performance metrics for flare fore-
casting with the CNN-estimated SHARPs imply that high
relative errors notwithstanding, the CNN-estimated features

can be useful for building space-weather forecasting tools.
This is a consequence of (true) SHARPs feature values vary-
ing over several orders of magnitudes and thus being signifi-
cantly different for flaring and nonflaring ARs for forecasting
of flares (Dhuri et al. 2019). Accuracy of the CNN-estimated
SHARPs features may be improved by significantly increas-
ing the resolution of LOS magnetograms from, e.g., GONG,
using techniques such as super-resolution (Munoz-Jaramillo
et al. 2022). Our method is thus suitable for reconstructing
vector-field features from historical LOS magnetograms, ul-
timately useful for reliable space-weather forecasting.

4.4. Interpreting the CNN

CNNs and, in general, deep learning are extremely effi-
cient at identifying correlations in the data. In this case, the
CNN builds a useful model of AR vector magnetic fields
from the observed LOS magnetograms. In particular, the
CNN estimated SHARPs features may be reliably used to
study energy build up and time evolution of magnetic fields in
flaring ARs. Yet it is very challenging to open up the trained
network and understand the CNN to uncover the informa-
tion absorbed. Nevertheless, weights learned by the CNN
can shed some light on its working. There are also attribu-
tion methods to quantify the contribution of different parts of
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Figure 8. Integrated gradient (IG) attribution maps. The contour plots for the IG attribution maps highlight the regions from magnetograms
with the highest attributions for the CNN estimation of SHARPs features — total unsigned flux, absolute net current helicity, and mean free
energy density. The red/blue contours correspond to the regions with the net positive/negative attributions for the magnetograms in the bottom
rows relative to the reference magnetograms in the top rows. The ∆ values are the percentage change in the normalised values of the respective
features between the present and the reference observations. The colorbar for the magnetograms is saturated with ± 500 G. The IG attribution
maps are smoothed with a Gaussian filter of standard deviation 10 pixels before obtaining the contours.
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the input image to the CNN’s output. Here, we analyse the
weights of the CNN as well as obtain attribution maps for
input magnetograms to interpret the trained CNN.

The CNN architecture (Figure 1) comprises a fully con-
volutional network for processing LOS magnetograms and
a fully connected layer of neurons for processing informa-
tion about the location of ARs on the solar disk. The
penultimate concatenation layer comprises a global-average-
pooling layer, a global-max-pooling layer that process the
LOS magnetograms and a fully-connected layer that pro-
cesses the location of the ARs. The global-average-pooling
neurons are sensitive to the entire spatial extent of LOS mag-
netograms, while the global-max-pooling neurons are sensi-
tive to spatially local patterns. The fully-connected neurons
are sensitive to AR coordinates on the disk. Figure 7 illus-
trates the distribution of the top weights of each of the three
components in the penultimate layers as their contribution
to the output of the CNN that estimates total unsigned flux,
absolute net current helicity and mean free energy density.
Neurons associated with global-average pooling contribute
dominantly to the total unsigned flux and mean free energy,
implying that their estimation depends on the consideration
of the entire LOS magnetograms. For absolute net current
helicity, key contributors are neurons from the global max-
pooling layer and its estimation is sensitive to spatially local
patterns from LOS magnetograms. Without the global-max-
pooling layer, absolute net current helicity and related CNN-
estimated SHARPs features show ∼ 30% less Pearson corre-
lation with the true values. Weights from neurons related to
AR location on the solar disk are ∼ 0, and thus, the CNN esti-
mation does not strongly depend on the AR location. Indeed,
the CNN may be trained equally well without the additional
input of the AR location. This may be a consequence of con-
sidering AR patches only within ±45◦ where the projection
effects are not significant.

While there are many attribution methods, gradient-based
methods such as saliency maps (Simonyan et al. 2013), grad-
CAMs (Selvaraju et al. 2017), integrated gradients (IG) (Sun-
dararajan et al. 2017) etc., are favoured over perturbation-
based methods such as occlusion masks (Zeiler & Fergus
2014) because of computational efficiency and higher res-
olution attribution maps. IG attribution maps are of the same
resolution as the input magnetograms and are thus superior to
grad-CAMs obtained from the CNN feature maps. Also, un-
like saliency maps, IG attribution maps are calculated using
a reference input image that facilitates assigning a cause for
the attribution e.g. by comparing the magnetic-field evolu-
tion (Sun et al. 2022). Thus, here we use IG attribution maps
to identify pixels, and hence the magnetic-field features in the
input, that are important for the CNN output. The IG attribu-
tion map for a given input image is calculated by integrating

gradients in the CNN output along the path from a reference
image. Formally,

Lf (x, x0) = (x− x0)×
∫ 1

α=0

∂Y f (x0 + α× (x− x0))

∂x
dα,

(1)
where x0 is the reference image, Y f is the CNN output for
SHARPs vector-field feature f .

Figure 8 shows contour plots of typical IG attribution maps
for a few example magnetograms from flaring ARs (bottom
rows). The red/blue contours include regions of net posi-
tive/negative contribution towards the CNN output. The IG
attribution maps for the three SHARPs features — total un-
signed flux, absolute net current helicity, and mean free en-
ergy density — are shown separately along with the refer-
ence magnetograms (top rows) used. In general, increas-
ing/decreasing positive polarity flux corresponds to net pos-
itive/negative attribution. For total unsigned flux, almost
all magnetic-field regions, even relatively smaller regions
with weaker magnetic fields, constitute a positive/negative
attribution. In contrast, for absolute net current helicity
and mean free energy density, only relatively larger and
stronger magnetic-field regions constitute a positive/negative
attribution. For mean free energy, positive/negative attribu-
tion regions typically correspond to the uniformly increas-
ing/decreasing positive flux. In the case of absolute net cur-
rent helicity, attributions correspond to regions with ”mixed”
magnetic fields of the positive-negative polarities closely lo-
cated. The appearance of a spurious magnetic-field polar-
ity inversion line (PIL) is a known artifact in the line-of-
sight magnetograms whenever the magnetic-field inclination
relative to the line-of-sight exceeds 90◦ (Leka et al. 2017).
We find that in many cases (e.g. HARPs 407, 3291, and
3311) when the PIL artifact exists for magnetic fields within
penumbrae, it wrongly constitutes an important attribution.
The misattribution results from the failure of the CNN to
learn the PIL artifact (Sun et al. 2022) and as a conse-
quence, limits the accuracy of the reconstructed the vector-
field-features.

5. DISCUSSION

We have thus developed a CNN model for quantifying
vector-field properties — extensive features such as total
unsigned flux as well as properties depending explicitly
on transverse magnetic-field component such as free-energy
density and current helicity — using LOS magnetograms
taken from space-based HMI and ground-based GONG in-
struments. The CNN-estimated features strongly correlate
(> 90%) with their true measurements from HMI SHARPs,
particularly for high-resolution LOS magnetograms from
HMI. Time-evolution of the CNN-estimated features reliably
mimic true AR magnetic-field evolution, particularly for ARs
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producing major flares (M5 or greater). Prior to HMI, vector-
magnetic-field observations available from instruments such
as Imaging Vector Magnetograph and Hinode/Spectro Po-
larimeter (Kosugi et al. 2007) have limited spatial and tem-
poral converge. In contrast, near-continuous observations
of LOS magnetograms are available since the 1970s from
missions such as the Kitt Peak telescope (KP), MDI and
GONG. LOS magnetograms from these instruments vary in
their spatial resolution that are lower than HMI resolution.
Nonetheless, these instruments’ observation periods overlap
with HMI (KP:2010-present, MDI:2010-2011, GONG:2010-
present) and the attendant observations may be used to train
or fine tune the CNN model to estimate SHARPs vector-field
features. We explicitly show that the flare-forecasting perfor-
mance of the CNN-estimated features is comparable to the
true SHARPs. Therefore, vector-fields estimated from past
LOS observations of nearly five decades using CNN can pro-
vide approximately four times more solar storms’ data than
currently available, useful for building robust statistical mod-
els for space-weather forecasting using ML. A larger sample
size of solar storms also facilitates building ML algorithms
based on time series of AR observations which may signifi-
cantly improve forecasting performance (Dhuri et al. 2019).
The CNN estimated vector-fields also provide a new perspec-
tive to understand and quantify magnetic-field dynamics dur-
ing the past extreme events such as 2003 Halloween storms
as demonstrated here.

Our CNN estimates are reliable for studies of solar storms,
yet there is also a significant scope of improvement. Our
estimates of vector-field features using HMI magnetograms
are consistently more accurate compared to those esti-
mated using lower resolution GONG magnetograms. Us-
ing LOS magnetograms from GONG and other instruments
that are explicitly cross-calibrated with HMI LOS mag-
netograms may significantly improve accuracy of the cor-

responding vector-field instruments. Also, Deep-learning-
based techniques for improving the resolution of magne-
tograms, namely super-resolution, are being successfully de-
veloped (Rahman et al. 2020; Munoz-Jaramillo et al. 2022).
Using super-resolved LOS magnetograms as input to the
CNN promises to yield more accurate CNN estimates of the
vector-field features. Our estimates are also based only on
the training data from the rising phase of cycle 24. Using
new data available from HMI and also from newer instru-
ments, a robust CNN regression is achievable. Extending
our method, reasonable data-driven estimates of even the full
photospheric vector-magnetic-field from only LOS magne-
tograms may be feasible, which opens up a new approach in
studying and modelling AR magnetic-fields using ML.
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APPENDIX

A. TIME EVOLUTION OF THE CNN-ESTIMATED FEATURES ON ALL ARS PRODUCING FLARES M5 OR GREATER.
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Figure 9. Time-evolution of the CNN-estimated vector-field features on flare-productive active regions. Comparison of the CNN-estimated
values, using HMI (blue) and GONG (black) LOS magnetograms, of total unsigned flux, absolute net current helicity and mean free energy
density with true values (red) calculated from HMI vector magnetograms are shown for HARP 750. Only observations within ±45◦ are
considered. 1-σ error bars are shown. The gaps indicate missing observations. The complete figure set (28 images) for active regions that
produced at least one M5 or greater flare is available in the online journal.

B. COMPARISON OF THE CNN-ESTIMATED FEATURES DURING THE 2003 HALLOWEEN STORMS
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Figure 10. A comparison of the time-evolution of the CNN-estimated vector-field features during the 2003 Halloween storms using MDI
and GONG LOS magnetograms. The CNN trained with HMI magnetograms is used for the estimation from MDI magnetograms whereas
the CNN trained with GONG magnetograms is used for the estimation from GONG magnetograms. Note that the HMI observations are not
available before 2010. The CNN:GONG feature values are generally high compared to the CNN:MDI, showing little variation throughout the
storms. The CNN:MDI features appear to capture the variation of these features during the storms expected from the theoretical modelling e.g.
(Kazachenko et al. 2010). The 1-σ errors are shown. The gaps indicate missing observations. The legend in the rightmost panel applies to all
panels.

C. MDI CORRELATIONS
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SHARPs Features Pearson correlation Spearman correlation
Total unsigned flux 82.49 ± 21.01 68.09 ± 37.73
Area 85.55 ± 23.82 74.59 ± 17.72
Total unsigned vertical current 74.83 ± 45.39 64.60 ± 46.31
Total unsigned current helicity 75.22 ± 45.28 65.80 ± 47.14
Total free energy density 84.18 ± 12.15 76.40 ± 19.94
Total Lorentz force 89.13 ± 11.33 75.37 ± 29.10
Absolute net current helicity 51.62 ± 27.28 48.97 ± 23.21
Sum of net current per polarity 42.84 ± 35.65 38.69 ± 32.27
Mean free energy density 92.60 ± 04.02 89.26 ± 07.80
Area with shear > 45◦ 91.78 ± 03.32 89.63 ± 03.32
Flux near polarity inversion line 62.64 ± 14.63 59.09 ± 21.23

Table 8. Pearson and Spearman correlations between the CNN-estimated vector-field features SHARPs using MDI line-of-sight mag-
netograms and their true values. The SHARPs features are estimated using the CNN trained with the HMI line-of-sight magnetograms. The
AR patches of MDI line-of-sight magnetograms are taken from the publicly available data product Space-Weather MDI Active Region Patches
(SMARPs) (Bobra et al. 2021). SMARPs and SHARPs data overlap between 1 May 2010 and 28 October 2010 (Bobra et al. 2021).
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Figure 11. Additional examples of Integrated gradient (IG) attribution maps (Figure 8).
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